Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice.

نویسندگان

  • Ashley P Ng
  • Stephen J Loughran
  • Donald Metcalf
  • Craig D Hyland
  • Carolyn A de Graaf
  • Yifang Hu
  • Gordon K Smyth
  • Douglas J Hilton
  • Benjamin T Kile
  • Warren S Alexander
چکیده

Hematopoietic stem cells (HSCs) are rare residents of the bone marrow responsible for the lifelong production of blood cells. Regulation of the balance between HSC self-renewal and differentiation is central to hematopoiesis, allowing precisely regulated generation of mature blood cells at steady state and expanded production at times of rapid need, as well as maintaining ongoing stem cell capacity. Erg, a member of the Ets family of transcription factors, is deregulated in cancers; and although Erg is known to be required for regulation of adult HSCs, its precise role has not been defined. We show here that, although heterozygosity for functional Erg is sufficient for adequate steady-state HSC maintenance, Erg(+/Mld2) mutant mice exhibit impaired HSC self-renewal after bone marrow transplantation or during recovery from myelotoxic stress. Moreover, although mice functionally compromised for either Erg or Mpl, the receptor for thrombopoietin, a key regulator of HSC quiescence, maintained sufficient HSC activity to sustain hematopoiesis, Mpl(-/-) Erg(+/Mld2) compound mutant mice displayed exacerbated stem cell deficiencies and bone marrow failure. Thus, Erg is a critical regulator of adult HSCs, essential for maintaining self-renewal at times of high HSC cycling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMATOPOIESIS AND STEM CELLS Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice

Hematopoietic stem cells (HSCs) are rare residents of the bone marrow responsible for the lifelong production of blood cells. Regulation of the balance between HSC self-renewal and differentiation is central to hematopoiesis, allowing precisely regulated generation of mature blood cells at steady state and expanded production at times of rapid need, as well as maintaining ongoing stem cell capa...

متن کامل

High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias

Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally di...

متن کامل

Piwi Genes Are Dispensable for Normal Hematopoiesis in Mice

Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized "piwi" refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34⁺ stem/progeni...

متن کامل

The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice.

Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer; however, its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias. Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, ...

متن کامل

Mutation of STAT1/3 binding sites in gp130(FXXQ) knock-in mice does not alter hematopoietic stem cell repopulation or self-renewal potential.

Interleukin (IL)-6 family cytokine signaling through gp130 and signal transducer and activator of transcription (STAT) activation is believed important for early hematopoiesis. To determine whether gp130/STAT1/3 physical interaction is required, we compared hematopoietic repopulating activities of embryonic day (E)14.5 fetal liver cells from gp130(FXXQ/FXXQ) knock-in mice, which have four mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 118 9  شماره 

صفحات  -

تاریخ انتشار 2011